top of page

Group

Public·8 members

Liquid Crystal Displays: Fundamental Physics An...


Most notably used for computer screens, televisions, and mobile phones, LCDs (liquid crystal displays) are a pervasive and increasingly indispensable part of our lives. Providing both an historical and a business-minded context, this extensive resource describes the unique scientific and engineering techniques used to create these beautiful, clever, and eminently useful devices.




Liquid Crystal Displays: Fundamental Physics an...


DOWNLOAD: https://www.google.com/url?q=https%3A%2F%2Ftweeat.com%2F2uepXc&sa=D&sntz=1&usg=AOvVaw3QZ2pwxcdAIba9wLH9XrhP



The power of mathematical physics thus was brought to bear upon the study of light, and particularly the polarization of light by material bodies, including liquid crystals. After a brief historical description of polarization, a physical interpretation provides substance to the mathematical concepts. Subsequent chapters cover:


A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly[1] but instead use a backlight or reflector to produce images in color or monochrome.[2] LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images with low information content, which can be displayed or hidden. For instance: preset words, digits, and seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.


Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.


The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.[4] An example is a mixture of 2-(4-alkoxyphenyl)-5-alkylpyrimidine with cyanobiphenyl, patented by Merck and Sharp Corporation. The patent that covered that specific mixture expired.[5]


Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.[6] After the black resist has been dried in an oven and exposed to UV light through a photomask, the unexposed areas are washed away, creating a black grid. Then the same process is repeated with the remaining resists. This fills the holes in the black grid with their corresponding colored resists.[7][8][9][10][11] Another color-generation method used in early color PDAs and some calculators was done by varying the voltage in a Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.[12] They were typically restricted to 3 colors per pixel: orange, green, and blue.[13]


The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).


The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.[27]Another report on the origins and history of LCD from a different perspective until 1991 has been published by Hiroshi Kawamoto, available at the IEEE History Center.[28]A description of Swiss contributions to LCD developments, written by Peter J. Wild, can be found at the Engineering and Technology History Wiki.[29]


In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.[32] In 1962, Richard Williams of RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.[33]


In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the dynamic scattering mode (DSM). Application of a voltage to a DSM display switches the initially clear transparent liquid crystal layer into a milky turbid state. DSM displays could be operated in transmissive and in reflective mode but they required a considerable current to flow for their operation.[36][37][38][39] George H. Heilmeier was inducted in the National Inventors Hall of Fame[40] and credited with the invention of LCDs. Heilmeier's work is an IEEE Milestone.[41]


In the late 1960s, pioneering work on liquid crystals was undertaken by the UK's Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.


The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.[42] Lechner, F.J. Marlowe, E.O. Nester and J. Tults demonstrated the concept in 1968 with an 18x2 matrix dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.[43]


On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.[36] Hoffmann-La Roche licensed the invention to Swiss manufacturer Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.[44] In 1971, the company of Fergason, ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.[45] In 1972, the first wristwatch with TN-LCD was launched on the market: The Gruen Teletime which was a four digit display watch. 041b061a72


About

Welcome to the group! You can connect with other members, ge...
bottom of page